Tag Archive for: low dissolved oxygen

Gaia, a global leader in the development and application of super oxygen saturation systems empowered by ultra-fine nanobubble technology, has had an ongoing relationship with Cermaq, Canada for over 10 years, starting with evaluation systems and progressing to full implementation in several of their farms in Canada and Chile. Gaia’s patented super saturation technology continues to be a leader in ultra-fine nanobubble systems designed to boost oxygen levels in aquaculture, remediate algae and improve fish health and growth.

 

Scientists for decades have noted the increasing frequency of phytoplankton blooms (algae) as global temperatures rise. These current warming trends in the oceans cause phytoplankton blooms, reduced health and low harvest weight due to less than optimal dissolved oxygen levels. The warmer the water the lower the level of naturally occurring dissolved oxygen.  These occurrences, experienced around the world, have a significant negative impact on open ocean aquaculture.

 

Gaia’s patent pending process for creating oxygen ultra-fine nanobubbles is vital to the future of aquaculture producers, remediating phytoplankton while providing sustainable oxygen levels that maximize fish health and growth.

 

In the July/August 2019 issue of Aquaculture North America, salmon producer Cermaq, Canada speaks about the use of Gaia ultra-fine nanobubble technology in delivering oxygen efficiently to their farms to help mitigate the effects of low dissolved oxygen in ocean water. Gaia’s ultra-fine nanobubbles remain stable in solution for a much longer time than other aeration systems in use by many producers.  Further, Gaia ultra-fine nanobubble oxygenation technology can be deployed at varying depths depending on pen construction.

 

Gaia continues to work with aquaculture companies worldwide to provide them with ultra-fine nanobubble technical expertise and installation support to meet their needs.

 

View more media in our Gallery.
Read the full Aquaculture North America article here.

Freshwater environments across the globe continue to be threatened by the intrusion of brackish and salt-water for a variety of reasons. This puts naturally occurring groundwater and other freshwater stores at risk, even when they are not in close proximity to a coastline.

 

Within the United States, states such as California, Florida, Arizona and many others are among the areas where this is taking place. Regions in Asia, the Middle East and Africa have all seen freshwater supplies for agriculture begin to dwindle due to brackish water infiltrating natural freshwater reservoirs. Brackish salinated water results in plant stress for producers.  The instability created by this ecosystem change is a major concern in global food security.

 

Gaia, a global leader in the ultra-fine nanobubble technology arena has jointly been collaborating within the BioResource & Agricultural Engineering (BRAE) Department at California Polytechnic University (CalPoly), since 2017 to create a solution to this rising problem.

 

Department Head Dr. Peter Livingston, P.E., and Sara Kuwahara, Ph.D., of Cal Poly’s BRAE Department focused their research on finding ways to produce food in environments which are otherwise unsuitable for agricultural activity due to brackish/heavily salinated nature of their water sources. Their ongoing research has employed Gaia’s patented ultra-fine nanobubble oxygen technology to deliver targeted oxygen levels, along with trillions of nanosized bubbles allowing food to be grown in water containing up to 20,000 parts per million of salt.

 

In the Summer 2017 issue of Cultivate Magazine published by the College of Agriculture, Food and Environmental Sciences at CalPoly, Dr. Livingston speaks about the use of the Gaia Ultra-fine Nanobubble technology in delivering oxygen ultra-fine nanobubbles to research the potential of growing food in highly saline water.

 

Read the full article on page 10-11 here.